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Introduction Results Conclusion

We show that a classifier trained on a mixture of real and

: : This study evaluated three object
Deep Iegrmng_ metho.ds. have b.e.en ysed in detectionymodels for their pe n{ormance — S Robo"_‘?"mm e e synthetic steatosis ultrasounds outperforms models trained
medical imaging to aid in classm.catlon systems detecting organs in ultrasound images. TR g, T el e - only on real images. A pipeline using YOLOvV8 or Roboflow 2.0
such as na_VIgatlon systems f(_)r liver | The models were based on COCO o can be used as a navigation aid system, and an EfficientNet
segmentation, feature extraction, and disease YOLOVS. and Roboflow 2.0 ’ Portal Vein classifier can be helpful in the staging of liver steatosis/cirrhosis
classification and to generate realistic medical o) ' > = Hepatic Vein disease
. that could be used for training neural architectures. We found that the P — . . - .
Images . g YOLOV8 model performed the best for e These findings indicate that ultrasound technicians, clinical
networks. Convolutional Neural Network (CNN) . . o — Imaging healthcare professionals, and diagnostic medical

- - kidney detection, achieving a mean " idney Medulla ging P ) g

and two-phased Generative Adversarial Average Precision (mAP) of 97.6.1% ——— = sonographers could be helped by artificial intelligence/deep
Network (GAN.) arc.h|tectures h_ave been used with a precision of 96% and recall of —— learning models in their liver protocol navigation and selection
for the synthesis of images for improved | of ROI, and as a reliable factor for grading fatty liver disease

85, 2%_ ’ Mass identified as NON-HCC

The YOLOv8 model was trained for up
to 200 epochs using patient-level splits
to avoid data leakage. The training
dataset was normalized based on the
prevalence distribution of the disease in
the US population, and the images
were labeled manually using Roboflow.

classification of liver disease.

and detecting masses, with a probability of HCC.

Object Detection
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In this project, we build a pipeline in which
real-time ultrasounds are processed via an For steatosis grading, we used Detection of HCC with If the object detection
ObJe_Ct qletectlon mgdel to ald_ln ultrasound EfficientNet (Confusion Matrix), training different probabilities model detects a liver and
navigation. The object detection model for steatosis grade was labeled from a associated with each kidney together in an
identifies 10 different structures (organs, veins, biopsy, which provides the percentage finding. Other ROl are image, the image is

and masses), including HCC. Sagittal and of hepatocytes with fatty infiltration. also detected in each passed to the second part
transverse views in which kidneys are detected (None: 0%, Mild: 5% to 20%, Moderate: frame. of the pipeline for

are pasfsed to subsequent models tc} detect the 25% to 50%, Severe: 50% to 100%) steatosis grading.

stage of liver steatosis or cirrhosis of the

patient. The steatosis grade is a function of the @ References
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Patient-level split

Segmentation model
extracts pixels of
interest for
classification model

echogenicity of liver/kidney ratio’.
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Brightness, Contrast,
Horizontal Flip

Synthetic Images to improve accuracy were generated using latent diffusion models
conditioned on semantic maps, class-to-image, and text-to-image models.




